
D-CHAIN
A community-driven open-source
Blockchain Protocol

05

05

06

07

09

11

12

14

16

17

18

19

20

21

23

25

26

31

32

33

28

TABLE OF CONTENTS

Company Profile 2020

003

D-Chain is a decentralized, Open-source blockchain with a virtual machine that supports

small, medium, and large-scale enterprises to implement their smart contracts. The coin

of the D-chain is called Decos or D-Coin and the ticker for the same is called DCX. For

decades, the concept of decentralized digital currencies, and other applications such as

property registries, has been well-known. In the 1980s and 1990s, anonymous e-cash

protocols relied on a cryptographic primitive called Chaumian blinding to provide a highly

private currency. However, the protocols failed to gain traction due to their dependence

on a central intermediary. Wei Dai's B-money was the first to propose creating money by

solving computational puzzles. However, the proposal did not provide details about how

this could be done. Hal Finney presented a concept called reusable Proofs of Work in 2005.

This system combines ideas from b money with Adam Back's computationally challenging

Hashcash puzzles to create an idea for a cryptocurrency. However, it again failed to meet the

ideal because it relied on trusted computing as its backend. Satoshi Nakamoto introduced a

decentralized currency in 2009 for the first time. This combination of established primitives

for managing ownership via public key cryptography and a consensus algorithm to keep

track of who has coins is known as "proof-of-work."

https://network.d-wallet.io/

Company Profile 2020

004

Because it simultaneously solved two problems, proof-of-work was a significant breakthrough

in space. It provided a simple but moderately efficient consensus algorithm that allowed

nodes to agree on a set canonical update to Bitcoin's Ledger. It also allowed for free entry

to the consensus process. This solved the political problem of who could influence it, and

prevented Sybil attacks. This is done by replacing a formal barrier to participation (such as

the requirement to register as a unique entity to a list) with an economic one. The weight of

a single vote in the consensus voting process will directly correlate to the computing power

the node brings. An alternative approach, proof-of-stake, has been developed. It calculates

the node's weight based on its currency holdings, not its computational resources. While

each approach's merits are beyond this paper's scope, it is essential to note that both can

be used as the backbone of a cryptocurrency.

Ethereum launched an alternative protocol to build decentralized applications. They

believed this would be helpful for many classes of decentralized apps. Ethereum achieved

this by creating the ultimate abstract foundational layer, a blockchain with a Turing-complete

programming language.This allowed anyone to create smart contracts and decentralized

apps where anyone could set their own rules for ownership, transaction formats, and state

transition functions. Namecoin's bare-bones version can be coded in just two lines, while

other protocols such as currencies and reputation systems like currencies can be created in

less than twenty. Smart contracts, which are cryptographic "boxes" that have value and only

unlock if certain conditions are met, were built on top of a blockchain. They became the first

one to launch virtual machine on top a of blockchain, But failed to save energy as it launched

Proof of Work consensus mechanism. Miners had spent more energy in the mining farms

for mining Ethereum.

Bitcoin mining alone creates more CO2 emissions than the whole of Argentina every year.

Many Cryptos had launched after launch of bitcoin which contributed more on green house

effects and climate change. Cryptos with Proof-of-Work consensus contributes more to

climate change and negative effect on environment. Cost for the Electric Consumption went

difficult to users due to highly volatile market. Although blockchains need to be validated,

there are new validation methods that offer comparable security levels through alternative

methods of verification.

Company Profile 2020

005

D-Chain – Consensus Algorithm:

a consensus mechanism. PoS is a mechanism that allows nodes to commit token "stakes"

for a some time in exchange for the chance of being selected to produce the next block.

The block rewards will be given to the "validator", the node that is chosen. This is the native

token of PoS.

We must first define Proof-of-Stake to answer the question, "What is Proof-of-Stak?".

To validate their transactions, miners use their cryptocurrency to access mining rights

proportional to the numbe of coins they own. To create a validator, they lock away their coins.

This node can verify transactions. The blockchain selects a random validator to approve a

block of information. The validator can verify the block and add it to the blockchain. They will

lose some coins if they add an incorrect block. The most return is earned by those who have

the most coins. D-Chain decided to use Proof-of-Stake (PoS),

PROOF OF STAKE: THIS IS A PROCESS THAT
VALIDATES CRYPTO TRANSACTIONS BY STAKING

Company Profile 2020

006

D-CHAIN ACCOUNTS
The state of the D-Chain is composed of objects called "accounts"". Each account has a 20-

byte address. State transitions are direct transfers of value between accounts. A D-Chain

account has four fields.

D-Chain allows decentralized distributed ledgers of transactions.There is no central server

that controls the network. Therefore, everyone must agree on what transactions are valid.

Fake transactions would be possible, otherwise it would not be possible to make them.

Nodes are the servers that make up a blockchain. Nodes are responsible for processing

transactions. Some nodes can add blocks to the chain of transactions, maintaining and

growing its ledger. These nodes are called "miners" in Proof-of-Work (PoW), networks such

as Bitcoin.

PoS is when nodes contribute funds to the network. This process is known as "Staking.""

D-Chain Nodes compete with one another to become the next block writers.Nodes that add

blocks to PoS networks are known as "validators". These are people who verify transactions

on a blockchain. Every validator is eligible to be selected to write the next block, and receive

its rewards.

It works in a lottery-like fashion: the more significant the stake, the better the chance that a

node will be chosen. "The pseudo-random selection of the next block writer or validator is

determined by the amount of stake you, as the user, have given to the network."

• The nonce is a counter that ensures each transaction can only ever be processed once

• The current Decos balance of the account.

• If present, the contract code of the account.

• The storage account (empty by default).

Company Profile 2020

007

MESSAGES AND TRANSACTIONS

"Decos", the main internal cryptocurrency-fuel of D-Chain and used to pay transaction

fees, is called. There are two types: externally-owned accounts controlled by private keys

and contract account controlled by contract codes. Externally owned accounts do not

have codes. One can send messages to an externally owned one by signing transactions.

Contract accounts activate their code every time they receive a message. This allows them

to access internal storage, read other messages, and create contracts.

It is important to note that D-Chain "contracts" should not be viewed as something that

must be "fulfilled" and "complied with". Instead, they should be recognized as "autono-

mous agents" who live within the D-Chain execution environment. They execute a specific

code piece when "poked" via a message or transaction and have direct control over their

Decos balance and key/value stores to track persistent variables.

In D-Chain, "transaction" refers to the signed data package containing a

message to send from an externally-owned account. Transactions include:

• THE MESSAGE'S RECIPIENT

• SIGNATURE IDENTIFYING THE SENDER

• THE AMOUNT OF DECOS THAT THE SENDER WISHES TO TRANSFER TO THE RECIPIENT

• AN OPTIONAL DATA FIELD

• THE START GAS VALUE IS THE MAXIMUM NUMBER OF COMPUTATION STEPS A TRANSACTION CAN TAKE.

• THE GASPRICE VALUE IS THE AMOUNT THE SENDER PAYS FOR EACH COMPUTATIONAL STEP.

Company Profile 2020

008

GAS PRICE and STAR TGAS are critical to D-Chain's anti-denial-of-service model. Each

transaction must limit the number of computational steps it can use to avoid hostile infinite

loops and other code wastage. Gas is the fundamental unit of computation.

A computational effort usually costs one gas. However, some operations can cost more

gas due to their computational complexity or the increased amount of data they must store

as part of the state. For every

transaction data byte, there is a fee of five gas. The fee system requires attackers to pay

proportionately for all resources they use, including computation and bandwidth.

Therefore, any transaction that causes the network to consume more of these

resources will be subject to a gas fee approximately proportional to the increase.

MESSAGES
Contracts can send messages to other contracts. Messages can be described as virtual
objects that cannot be serialized and only exist in the D-Chain execution environment. A
message can contain the following::

• THE MESSAGE SENDER (IMPLICIT)

• THE MESSAGE'S RECIPIENT

• THE MESSAGE AND THE AMOUNT OF DECOS THAT WILL BE TRANSFERRED

• AN OPTIONAL DATA FIELD

• A START GAS VALUE

These are the standard fields in all cryptocurrencies. Although the data field does not have

a function by default, the virtual machine does have an opcode that allows a contract to

access the data. For example, if a contract serves as an on-blockchain domain registry

service, it might want to interpret the data it receives as having two fields. The first is the

domain to register, and the second is the IP address to register it. These values would be

read by the contract and stored in appropriate storage.

Company Profile 2020

009

D-Chain State
transition function
The D-Chain state transition function, is called APPLY(S.TX -> S', which can be described

as

follows:

1.Verify that the transaction is formatted correctly (e.g., The transaction has the correct

number of values, the signature is valid and the nonce matches that in the sender’s

account.) If not, it will return as an error.

2.Calculate the transaction fee in START GAS * GAS PRICE and calculate the sending

address using the signature. Add the fee to the sender’s account balance, and increase the

sender’s nonce. Return as an error if there isn't enough balance.

3.Initialize GAS = START GAS and deduct a certain amount of gas per byte to pay for the

transactions.

A message is a transaction, except that it is produced by a contract, not an outside actor. A
message is created when code in a contract executes the CALL operator, which develops
and implements a message. A message is similar to a transaction. It leads to the recipient
account running its code. Contracts can also have connect with
external actors in the same way as external actors.

The gas allowance assigned to a transaction or contract only applies to the total amount
of gas consumed by the transaction and any sub-executions. If an external actor A sends
B a transaction with 1000 gas B then sends C a message, which consumes 600 gas. C's
internal execution consumes 300 gas before it returns, so B can still spend 100 gas until
running out.

Company Profile 2020

0010

The contract code in reality, is written in DVM code. This example was written in Serpent,

one of our high-level languages. It can be compiled into DVM code. Let's say that the con-

tract's storage starts empty. A transaction is sent with 10 Decos value, 2000 Gas, 0.001

Decos Gas Prices, and 64 Bytes of Data. Bytes 0-31 represent the number 2, and 32-63

the string CHARLIE. In this example, the state transition function is performed as follows:

1.Verify that the transaction is legal and properly formed.

2.Verify that the transaction's sender has at least 2000 * 0.01 = 2 Decos. Add 2 Decos to

the account of the sender if it is.

3.Initialize gas = 2000. Assuming the transaction is 170 bytes in length and the byte fee is

5, subtract 850 to get 1150 gas.

4.Add ten more Decos to the account of the sender and subtract them from the account of

the contract.

5.Run the code. This code will check if the index 2 storage is available for the contract. If it

does not, it will set the index 2 storage to the value CHARLIE. This will take 187 gas. The

remaining gas will be 1150.

6.Add 963 * 0.01 = 0.963 to the sender's account and return the result.

Let's say, for example, that the code of a contract is:

if !self.storage[calldataload(0)]:

self.storage[calldataload(0)] = calldataload(32)

4.Transfer the transaction value to the recipient from the sender account. If the

receiving account is not yet created, it should be. If the receiving account contains a

contract, you can run the contract's code until it is completed or ends.

5.If the value transfer fails because the sender does not have enough money or the code

execution runs out of gas, you can reverse all state changes, except for the payment of

fees, and add them to the miner’s account.

6.If not, send all fees associated with gas consumption to the Validator and refund any gas

fees to the sender.

Company Profile 2020

0011

If the transaction was not completed by a contract, the total transaction fee would equal the

GAS PRICE multiplied with the length of the transaction. The data that was sent along by

the transaction would then be insignificant.

In terms of reverts, messages are equivalent to transactions: If a message execution runs

low on gas, then all executions will trigger from that execution revert. Parent

executions don't need to be reversed. It is safe for a contract to call another contract. For

example, if A calls B with gas, then A's execution will lose only G gas. Last but not least,

there is an opcode called CREATE that creates a contract. Its’ execution mechanics are

similar to CALL, except that the output of execution determines the code for a newly crea-

CODE EXECUTION
The code used in D-Chain contracts is written using a low-level stack-based bytecode
language. Also known as "D-Chain Virtual Machine Code" or "DVM Code,"", the code is
written in an "D-Chain virtual code" (or "DVM code") format. Each byte in the code
represents an operation. Code execution is a endless loop. It consists of repeating an ope-
ration at the counter program count (which starts at zero) and then incrementing it by one
until the end of the code or an error, STOP, and RETURN instruction is detected. Three
types of storage space are available to the operations:

Storage is unlike memory and stack, which are reset after computation ends.

The code can access the sender, value and data of the incoming messages as well as the

block header data. It can also return a bytes array of data as an output.

• THE STACK IS A CONTAINER THAT LASTS IN FIRST OUT AND CAN HOLD VALUES.

• MEMORY IS AN INFINITELY EXPANDABLE ARRAY OF BYTE ARRAYS

• THE LONG-TERM STORAGE OF THE CONTRACT, WHICH IS A KEY/VALUE BANK, IS ALSO INCLUDED. STORAGE IS UNLIKE MEMORY AND

STACK, WHICH ARE RESET AFTER COMPUTATION ENDS.

Company Profile 2020

0012

• Verify that the block you are referring to is still valid.

•Ensure that the timestamp for the current block is not greater than the referenced

 block's and that it is less than 15 minutes in the future.

•Verify that block number, difficulty, and transaction root are all valid.

•Verify that the proof of work on the block is valid.

Although the D-Chain blockchain is very similar to Bitcoin it has some differences D-Chain

is different from Bitcoin in terms of blockchain architecture. D-Chain blocks have a copy

both of the transaction list as well as the most recent state. The block also stores two ad-

ditional values, the block number (and the difficulty) This is the basic block validation algo-

rithm for D-Chain:

BLOCKCHAIN AND MINING

It is simple to create an DVM code formal execution model. The tuple is the

block_state, transaction message, code, memory and the stack of the D-Chain virtual

machine. Block_state contains all accounts, balances, storage, Moreover, it is

also used to define the entire computational state. The current instruction is determined

at the beginning of each round of the execution by finding the PCth byte of code (or 0, if

pc>= len(code).) Each instruction has its definition of how it affects tuple. ADD, for exam-

ple, removes two items from the stack, decreases gas by 1, increments pc 1, and causes

their sum. and storage. on the other hand, pushes the top two stack items off the stack and

inserts the second item in the contract's storage at index 1. A basic implementation of the

D-Chain can be accomplished in just a few hundred lines.

Company Profile 2020

0013

•Let S[0] represent the state at the block's end.

•Let TX be the block’s transaction list with n transactions. For all i in 0...n-1, set S[i+1] =

 APPLY(S[i],TX[i]). Return an error if any application returns an error or if the total amount of

 gas consumed in the block until that point exceeds the GASLIMIT.

•Let S_FINAL be S[n], while adding the block reward to the miner.

•Verify that the Merkle tree root for the state S_FINAL equals the last state root in the

 block header. If it is, then the block is valid.

Although the approach might seem inefficient because it stores all of the state with every

block, in reality, efficiency should be similar to Bitcoin. Because the state is stored in a tree

structure, only a small portion of the tree must be modified after each block. The vast ma-

jority of the tree should look the same between adjacent blocks Therefore, the data can be

stored once, but referenced twice with pointers (e.g., Hashes of subtrees. This is possible

with a special type of tree called a "Patricia Tree."". It also incorporates a

modified Merkle tree concept which allows nodes to be efficiently added and removed, not

just modified, Because all state information is included in the last block, it is not necessary

to store all blockchain history. This strategy, if applied to Bitcoin can result in a 5-20x re-

duction in space.

One common question is "Where" contract code is executed regarding physical hardware.

The simple answer is that contract code execution is part of the state transition function

definition. This block validates block B. If a transaction is added to block B, the code

execution generated by that transaction will be executed now by all nodes that have

downloaded and validated block B.

Company Profile 2020

0014

coinomics and vesting allocation

Company Profile 2020

0015

There are generally three types of applications that can be built on top of D-Chain.

The first is financial apps, which provide users with powerful ways to manage and

enter into contracts using their money. These include sub-currencies and financial

derivatives as well as savings wallets, wills, hedging, savings, and even full-scale

employment contracts. Semi-financial apps are those where money is involved, but

there is also a heavy non-monetary side to what's being done. A perfect example

of this is self-enforcing bounty for solving computational problems. There are also

applications like online voting or decentralized governance, which are not financially

related. D-Ecosystem is about to use this Chain for Launching Decentralised

Ecosystem for Users.

Applications

Details of Products

Company Profile 2020

0016

IDO Details
PHASE -1

PHASE -2

PHASE -3

Many applications can be made of on-blockchain token systems. These include

sub-currencies that represent assets like USD or gold, company stocks, individual tokens

representing smart property, secure unforgeable coupon systems, and token systems wit-

hout any ties to traditional value. In D-Chain, token systems are straightforward to imple-

ment. It is important to remember that a token system or currency is simply a database that

performs one operation: subtract A units from A, and give B X units. However, A must have

at least X units prior before the transaction. (2) The transaction has been approved by A.

To implement a token system, you only need to put this logic into a contract.

This is the basic code to implement a token system within Serpent:

def send(to) value:

Token Systems

if self.storage[msg.sender] >= value:

self.storage[msg.sender] = self.storage[msg.sender] - value

self.storage[to] = value

Company Profile 2020

0017

Financial derivatives are one of the most popular uses of "smart contracts" and the easiest

to implement in code. Implementing financial contracts presents a challenge because most

need to reference an external price ticker. A smart contract that protects against volatility

of Decos or another cryptocurrency with respect to the US Dollar is one example of this.

However, the contract must know the USD/DCX value. This can be done by using a "data

feed" agreement maintained by one party (e.g., NASDAQ) is designed to allow the party to

update the contract at will. It also provides an interface that allows other contracts to

send messages to the contract and receive a reply that includes the price.

• Wait for party A, to input 1000 Decos

• Wait for party B, to input 1000 Decos

This is the key ingredient of a hedging agreement:

Financial derivatives and
stable-value currencies

This is a literal implementation of the "banking system” state

transition function, which we discussed in this document. To distribute the

currency units, a few additional lines of code are required. Additionally, there are some

edge cases. Ideally, a function is added that allows other contracts to query the address's

balance. It is possible that D-Chain-based token systems that act as

sub-currencies could include another feature that on-chain Bitcoin meta-currencies do not

have: the ability to pay transaction fees directly in the currency. This would work by the

contract maintaining a Decos balance, with which it would reimburse senders for fees paid.

It would then replenish this balance by taking in fees and selling them in a continuous run-

ning auction. The contract would then refund the money each time it was refunded. Users

would need to "activate” their accounts with Decos.

Company Profile 2020

0018

In storage, record the USD value for 1000 Decos. This can be calculated by querying the
data-feed contract.

After 30 days, A or B can "reactivate" the contract to send $x worth of Decos to A and B.

These are the most widely used token standards globally.

Tokens Standards

• DEC20: is a standard interface for interchangeable tokens such as voting tokens and

virtual currencies.

• DEC 721: A standard interface for non-fungible tokens, such as a deed for artwork and

a song.

• DEC777: - lets you add functionality to tokens, such as a mixer contract to improve

transaction privacy or an emergency recovery function to help you out in case you lose

your private keys.

• DEC 1155: allows you to trade more efficiently and bundle transactions, thereby saving

money. This token standard permits the creation of utility tokens such as $BNB and $BAT,

and non-fungible tokens such as CryptoPunks.

• DEC 46626- Tokenized vault standard that optimizes and unifies technical parameters

for yield-bearing vaults

Company Profile 2020

0019

This contract could have great potential for crypto-commerce. The main problem with

cryptocurrency is its volatility. While many people and merchants want to be able to deal

with it securely and conveniently, they may not want to risk losing 23% of their funds within

a single day. The most popular solution to this problem has been issuer-backed assets.

This is where an issuer creates a currency in which they can issue and revoke units and

provide one unit to anyone (offline) who provides them with one unit (eg., gold, USD. gold,

USD). If the issuer receives one unit of crypto-asset, the issuer promises to give it back.

This allows any non-cryptographic asset (subject to trust) to be "uplifted" into cryptographic

However, in practice, issuers may not always be trustworthy, and the banking infrastruc-

ture may be too weak or hostile to allow such services. Financial derivatives provide an

alternative. Instead of one issuer funding an asset, there is a decentralized market made

up of speculators. They bet that the cryptographic reference asset will rise in price. DCX

plays this role. Because the hedging contract holds the funds in escrow, speculators

cannot default, unlike issuers. This approach is not entirely decentralized because a

trusted source still needs to provide the price ticker. However, this is an enormous

improvement in infrastructure requirements (unlike being an issuer, issuing price feeds

requires no licenses and can likely qualify as free speech) and reducing fraud

potential.

The first alternative cryptocurrency Namecoin tried to use a Bitcoin-like Blockchain to

provide a name registration service where users could register their names in a public

databank alongside other data. A DNS system that maps domain names such as "bitcoin.

org" or, in Namecoin’s case, "bitcoin.bit")

Identity and Reputation Systems

an IP address is the most popular use case. Email authentication is another use case, and

as more advanced reputation systems. This is the basic contract that will provide a

D-Chain based Namecoin like system for name registration.

Company Profile 2020

0020

The contract is simple. It is simply a database within the D-Chain network that can be

added or deleted Anybody can register a name that has a value. The registration will re-

main indefinitely. An advanced name registration contract will have a function clause that

allows other contracts to query it and a mechanism for the "owner" of the name (i.e., The

first person to register a name can change data or transfer ownership. You can also add

web-of-trust functionality and reputation.

def register (name, value)

If!self.storage[name] is:

Decentralized Storage
There have been a lot of online file storage startups over the years. The most popular is

Dropbox. They allow users to upload backups of their hard drives and store them on the

server. Users can then access the backup for a monthly charge. The file storage market is

still inefficient at this stage. A quick look at different solutions shows that at the 20-200GB

level, where neither enterprise-level discounts nor free quotas kick in, the monthly cost for

mainstream file storage costs can be more than the price of the entire hard disk in a

single month. D-Chain contracts could create a decentralized file storage

system where users can rent out their hard drives for small amounts of money. Unused

space can also be used to lower file storage costs.

We call this the "decentralized Dropbox agreement," which is the crucial component of

such a device. The contract works in the following way: the first step is to split the data into

blocks and encrypt each Next, you create a Merkle tree from it. The contract is then

Company Profile 2020

0021

formed with the rule that for every N block, the contract would choose a random index from

the Merkle tree. This will use the previous block hash (accessible from contract code) as a

source to random and give X Decos the first entity that supplies a transaction that includes

a simplified payment verification-like proof that the block at that index is owned by the user.

A micropayment channel protocol is available to users who wish to re-download the file.

To recover the file, users will need to pay 1 szabo for every 32 kilobytes. The most cost-ef-

fective approach is to have the payer replace the transaction with one that is slightly more

lucrative with the same nonce at 32 kilobytes.

One important aspect of the protocol is the fact that even though it might seem that one is

trusting many random Nodes not to forget the file file, you can reduce that risk to almost

zero by secret sharing the file and then watching the contracts to see if any piece is still in

the possession of any node. Cryptographic evidence that the file is still in someone's

possession is provided by contracts that are still paying money.

Decentralized Autonomous
Organizations
A "decentralized autonomous organization" is a virtual entity with a set of shareholders

or members. These members, possibly 67%, would have the power to spend the entity’s

funds and change its code. They would decide how to allocate the funds together. The

methods for allocating funds to a DAO could include salaries, bounties, and even more

exotic mechanisms like an internal currency to reward hard

work. It replicates the legal trappings and enforcement of a traditional

nonprofit or company but uses cryptographic blockchain technology instead. DAOs have

been dominated by the capitalist model of a "decentralized autonomy corporation" (DAC),

with dividend-receiving shareholders and tradable shares

Company Profile 2020

0022

An alternative possibly called a "decentralized community," would allow all members to

have equal decision-making power and require 67% of members to consent to adding or

removing a member. The group must enforce the requirement that only one person can

have one membership.

Here's a general guideline for how to code DAO. The simplest design is a small piece of

self-modifying software that can be modified if the members agree to a change. Code is

theoretically immutable. However, it's possible to get around this by having code chunks

in separate contracts and the addresses of which contracts to call stored within the modi-

fiable storage. Three transaction types would result from a DAO contract implementation.

These are distinguished by the transaction data:

Each clause would be added to the contract. It would keep a record of open storage

changes and a list of those who voted for them. It would also keep a list of all members. A

finalizing transaction can be executed if a storage change is approved by two-thirds of the

• [0,iK,V] to submit a proposal to index i for a change of address at storage index K value V

• [1,i] To cast a vote for proposal i

• [2,i] To finalize the proposal i, if sufficient votes have been received

members. A more advanced skeleton may include voting capabilities such as sending

transactions adding or removing members, and may even allow for Liquid democracy

style vote delegation. Anyone can vote for anyone. Assignment is transitive, so if A as-

signs someone and B someone else then A gets C's vote. This would allow the DAO, as a

decentralized community to grow organically. It also allows people to delegate the task to

specialists to filter out members. However, unlike the current system, specialists can pop

in and out as community members move around.

Company Profile 2020

0023

Additional Applications
1. Savings accounts. Imagine Alice is anxious about keeping her money safe but worried
that someone might hack her private key.

• Alice can only withdraw a maximum amount of 1% per day.

• Bob can only withdraw 1% of the funds each day. Alice, however, can make transactions

with her key closing off.

• Alice and Bob can both withdraw anything together.

Alice can usually withdraw 1% each day Bob can help her if she needs more. Alice can call

Bob to transfer the funds to a new contract if her key is stolen. Bob will eventually get the

funds out of Alice's account if she loses her key. If Bob is malicious, she can disable his

withdrawal ability.

2. Crop insurance. A weather data feed can be used to create a financial derivatives con-

tract. A derivative that pays inversely on Iowa's precipitation will pay if there is drought. If

there is rain, the farmer will receive money. This insurance can also be extended to

include natural disaster coverage.

A decentralized corporation is an alternative model. Each account can have zero shares

or more, and only two-thirds of shares must be present to make a decision. The skeleton

would include asset management functionality, the possibility to offer shares to be bought

or sold, and the ability for the company to accept offers (preferably using an

order-matching mechanism within the contract). Liquid Democracy-style delegation would

also be available, extending the idea of a "board" of directors.

Company Profile 2020

0024

3. A decentralized data feed. It may be possible to decentralize financial contracts using a

protocol called " SchellingCoin." SchellingCoin works like this: N parties each put into the

system the value for a given datum ((e.g., The DCX/USD price, the values are sorted, and

everyone between the 25 and 75th percentile receives one token as a reward.) Everyone

is motivated to give the correct answer, but there's only one value, that all

players can agree on: the truth. This allows the decentralized protocol to provide values

such as the DCX/USD currency, Berlin's temperature, or the result of complex computa-

tion.

4. Smart multi-signature escrow. Multi-signature transaction contracts are possible with

Bitcoin. For example, three of five keys can be used to spend funds. D-Chain offers more

flexibility. For example, four of five keys can spend all funds, while three of five can spend

as much as 10% a day. Two out of five keys can also spend 0.5% per day. D-Chain

multi-signature can be used to send transactions. Two parties can sign on the blockchain

at different times, and the last signature will send it.

5. Cloud computing. DVM technology can be used to create verifiable computing

environments. Users can ask others to perform computations and request proof that the

computations at selected checkpoints were correct. This creates a cloud computing mar-

ketplace where anyone can participate with their computer, laptop, or specialized server.

Security deposits and spot-checking can be used to verify that the system is reliable (i.e.,

Nodes cannot profitably cheat. This system is not suitable for all tasks. For example,

functions that require high levels of inter-process communication cannot be accomplished

on large clouds of nodes. However, other tasks are easier to parallelize.

6. Peer-to-peer gambling. Peer-to-peer gambling protocols such as Frank Stajano's

Cyberdice can all be implemented on the D-Chain. The simplest gambling protocol can be

described as a contract for difference on each block hash. More advanced protocols can

be developed to create gambling services that charge almost zero fees and have no chea-

ting ability.

Company Profile 2020

0025

Miscellanea And Concerns
Modified HTMLOST Implementation

7. Prediction markets. Prediction markets can be implemented with SchellingCoin or an

oracle. They may also be the first widespread application of futarchy to

decentralized organizations as a governance protocol.

8. Decentralized marketplaces on-chain, using the identity system and reputation as a

base.

Yonatan Sompolinsky, Aviv Zohar, and Aviv Zohar introduced the "Greedy Heavy

Observed Subtree” (GHOST) protocol in December 2013. GHOST was created because

blockchains with fast confirmation times suffer from lower security. Because blocks take a

specific time to propagate through a network, Validator A will mine a block, but Validator B

will mine another block before Validator A's block propagates. This will cause Validator B

to lose his block, which will be detrimental to network security. There is also a centraliza-

tion problem: If Validator A has 30% mining power and Validator B has 10%, A has a 70%

chance of producing a dead block. This is because A produces the last block 30% of the

time and will receive mining data immediately.

B, on the other hand, will be at risk of producing dead blocks 90% of the times. Because

A is more extensive it will be more efficient if the block intervals are short enough for a

high stale rate. These two effects together make it more likely that blockchains that quickly

produce blocks will lead to one mining pool with enough network hash power for de facto

control of the mining process.

Sompolinsky& Zohar
GHOST addresses the first problem of network security loss. It includes stale blocks as
part of the calculation for which block is the "longest". This means that not only the block's
parent and further ancestors, but also the block's ancestor are included in the calculation
to determine which block has the most proof-of-work backing it. We go beyond Zohar and
Sompolinsky's protocol and offer block rewards to stales. A stale block gets 87.5%, and the
nephew with the stale blocks the 12.5%. Uncles are not eligible for transaction fees.

Company Profile 2020

0026

D-Chain implements a simplified version of GHOST that only goes down seven levels. It is

defined as follows:

A block must identify a parent and must also specify 0 or more uncles

The following properties must be present in an uncle who is included in Block B:

It must be the child of the kth generation ancestral of B. 2 = k = 7.

It can't be an ancestor of B.

An uncle must have a valid block header. However, he does not need to have a block that

has been verified previously.

An uncle must be different from all uncles included in previous blocks and all other uncles

included in the same block (non-double-inclusion)

Block B's uncle U earns an additional 3.125% of his coinbase reward, while the Validator

from U receives 93.75% of the standard coinbase reward.

This version of GHOST was limited to only seven generations, and uncles were not

included. Unlimited GHOST would add too many complications to calculating which uncles

are valid for a block. Unlimited GHOST with compensation, removes the incentive to mine

on the mainchain, not the public attacker's chain.

Fees
Every transaction published to the blockchain incurs the cost of downloading and verifying

it. To prevent abu se, there needs to be some regulatory mechanism. Typically, this will

involve transaction fees. In Bitcoin, the default approach is to use purely voluntary fees.

This relies on Validators to act in their as gatekeepers and sets dynamic minimums. This

market-based approach allows supply and demand to determine the price.

Company Profile 2020

0027

This flaw in market-based mechanisms, when given an incorrect simplifying assumption,

magically disappears. This argument can be summarized as follows. Let's say that:

Transactions lead to k operations. The reward kR is offered to any Validator who includes

it, where R has been set by the sender. R and k are (roughly speaking) visible to the

Validator before the transaction.

A C operation costs per node (i.e., All nodes are equal in efficiency

There are N Validators, each with an identical processing power (i.e.,1/N total

There are no full-mining non-mining nodes.

If the expected reward exceeds the cost, a Validator will process the transaction. The

expected reward for a Validator is /N, since he has

a 1_N chance to process the next block. The miner's processing cost is /KC. Validators will

include transactions in which kR/N>kC or R > NC. R refers to the sender's

per-operation fee. This is a lower limit on the benefit the sender derives through the

transaction. N represents the total cost for the entire network of processing an operation.

Validators are motivated to include transactions that have a greater total utilitarian value

than the cost

It has been very well received by the Bitcoin community. This reasoning has a problem.

Transaction processing is not a marketplace. Although it may seem appealing to consider

transaction processing as a service the Validator offers to the sender, it will require that

every transaction the Validator includes be processed by all nodes in the network. There-

fore, the majority of transaction processing costs are borne by third parties, not the miner.

Hence, tragedy-of-the-commons problems are very likely to occur.

Company Profile 2020

0028

There are, however, important deviations from these assumptions that can be found in real

life:

Because the additional verification time delays block propagation and increases the

likelihood that the block will become stale, the Validator has to pay a higher processing

cost than other verifying nodes.

Another factor disincentivizing large Bitcoin block sizes is that large blocks take longer to

propagate and have a higher chance of becoming stales. High-gas-consuming blocks in

D-Chain can take longer to propagate. This is due to the fact that they require more time to

process transaction state transitions and validate transactions. This delay

disincentive is a major consideration in Bitcoin but less in D-Chain due to the GHOST

protocol. Therefore, relying upon regulated block limits provides a stable baseline.

Turing-Completeness and
Computation
Important note: the D-Chain virtual machine can encode any computation that can

be carried out. DVM code permits looping in two different ways. There is the JUMP inst-

ruction which allows the program jump to a previously accessed spot in the code. A JUMPI

instruction will enable for conditional jumping. This allows

statements such as while * 27: x =. Contracts can also call other contracts, allowing for

looping through recursion. This creates a problem. Can malicious users shut down

Validators and full nodes by forcing them into an endless loop? This problem arises from a

problem in computer science called the halting issue. It is impossible to predict whether or

not a program will ever stop.

Company Profile 2020

0029

Our solution, as described in the state transformation section, requires transactions to

specify a maximum number computation steps they are allowed to take. If the execution

takes longer, fees will still be paid. The same applies to messages. These examples will

demonstrate the motivation behind our solution:

An attacker creates an infinite loop contract and sends the transaction activating it to the

miner. After processing the transaction, the Validator will wait for the infinite loop to finish.

Even though execution stops halfway the transaction will still be valid and the attacker will

still pay the Validator for each computational step.

The attacker will create an infinite loop that is very long and will force the Validator into

calculating for so long that the last blocks are out. It will be impossible for the miner, to

claim the fee, to include the transaction. The attacker will have to submit a value

START GAS that limits the number of computation steps that can be executed. This will

ensure that the Validator is aware that the computation will take too many steps.

An attacker sees a contract with code of some form like send(A,contract.storage[A]);

contract.storage[A] = 0, and sends a

transaction with just enough gas to run the first step but not the second (i.e., Making a

withdrawal but not letting it go down. Because execution can stop at any point during

execution, the changes are reverted to the contract author.

To minimize risk, a financial contract takes the median of nine proprietary feeds. An

attacker takes over one of the data feeds, designed to be modifiable via the

variable-address-call mechanism described in the section on DAOs, and converts it to run

an infinite loop, thereby attempting to force any attempts to claim funds from the financial

contract to run out of gas. To prevent this from happening, however, the financial contract

can place a gas limit on the message.

Company Profile 2020

0030

The alternative to Turing completeness is Turing-incompleteness, where JUMP and JUM-

PI do not exist and only one copy of each contract is allowed to live, in the call stack at

any given time. This system would eliminate the need for the fee system and uncertainties

surrounding the effectiveness of our solution. The cost of executing a contract is limited by

size, so the fees described might not be necessary. Additionally, Turing-incompleteness is

not even that big a limitation; out of all the contract examples we have conceived

internally, only one required a loop, and even that loop could be removed by making 26

repetitions of a one-line piece of code. Turing completeness has serious

consequences. The limited benefit is not worth it. Why not just have a Turing-in

completeness language? In reality, however, Turing incompleteness is far from a neat

solution to the problem. Take a look at the following contracts to see why.

C0: call(C1); call(C1);

C1: call(C2); call(C2);

C2: call(C3); call(C3);

...

C49: call(C50); call(C50);

C50: (run one step of a program and record the change in storage)

Company Profile 2020

0031

The D-Chain network has its currency, Decos. This serves two purposes: it provides a

primary liquidity layer that allows for the efficient exchange of various digital assets, and

payment of transaction fees. The denominations will be pre-labeled for

convenience and avoidance of future arguments (see the current Bitcoin mBTC/uBTC/

satoshi discussion).

This should be viewed as an extended version of the concept of "dollars"/cents or "BTC",

and "satoshi." We expect "Decos" will be used for regular transactions, whereas Tera,

Peta, and Dei will be used for fees and protocol implementation in the near future. The re-

maining denominations might become useful later on and should not be included as clients

Unit of D-Coin (DCX) and its denominations with Common and SI name

Currency

Send a transaction to A. In 51 transactions, this contract takes up 2 50 computing steps.

Validators could attempt to detect logic bombs before they happen by keeping a value

beside each contract that specifies the maximum number and how many computational

steps it can take. This would calculate the maximum number of contracts that call other

contracts recursively. However, this would require Validators not to allow

contracts to create other contracts. Since the creation and execution of 26 of the 26

contracts could be easily rolled into one contract, the address field in a message can be

variable, so it is impossible to predict which contracts a particular contract will call. We

have come to a surprising conclusion.Turing completeness can be managed easily, while

the absence of Turing completeness can be challenging to manage without the same con-

trols. But, in such cases, why not let the protocol be Turing-comprehensive?

Value(In Dei) Exponent Common name SI Name

1 1 Dei Dei

1,000 103 KDei KiloDei

1,000,000 106 MDei MegaDei

1,000,000,000 109 GDei GigaDei

1,000,000,000,000 1012 µDei MicroDecos

1,000,000,000,000,000 1015 MiDei MilliDecos

1,000,000,000,000,000,000 1018 Decos Decos or D-Coin(DCX)

1,000,000,000,000,000,000,000 1021 KDecos KiloDecos

1,000,000,000,000,000,000,000,000 1024 MDecos MegaDecos

1,000,000,000,000,000,000,000,000,000 1027 GDecos GigaDecos

1,000,000,000,000,000,000,000,000,000,000 1030 µDecos Micro Decos

Company Profile 2020

0032

The issue of scaling is a common concern with D-Chain. D-Chain is similar to Bitcoin in that

each transaction must be processed by every node within the network. The current Bitcoin

blockchain is approximately 15 GB and grows by around 1 MB per hour. If the Bitcoin net-

work could process Visa's 2000 transactions per minute, it would grow 1 MB per 3 seconds

(1 GB/hour, 8 TB/year). The growth rate of the D-Chain will likely be similar. This is due

to the fact that D-Chain full nodes must store only the state and not the entire blockchain

history.

Scalability

Centralization risk is a problem when you have a large blockchain. The risk of

centralization is high when the blockchain size reaches 100 TB. This would mean that very

few large businesses would have full nodes, and all other users would use light SPV no-

des. There is a possibility that full nodes could come together and agree to cheat profitably

(e.g., Change the block reward and give yourself BTC. This would be impossible for light

nodes to detect immediately. There would be at least one honest full-node, and information

about fraud would start to trickle out via channels like Reddit. However, it would soon be

too late. Users would have to organize an effort to blacklist the blocks. This would create

a vast and likely impossible coordination problem, similar to that used to pull off a 51% at-

tack. This is a problem in Bitcoin. However, Peter Todd has suggested a solution.

D-Chain will employ two other strategies to address this issue in the short term. First, the

blockchain-based validating algorithms will force every validator to be a full node. This will

reduce the limit on the number of full nodes. We will also include an intermediate state root

in the blockchain to process each transaction. A verification protocol can circumvent the

centralization problem even if block validation has to be done centrally. As long as there is

one honest verifying node, it will not matter if the block validation process is centralized. A

Validator publishing an invalid block means that the block is either poorly formatted or that

the state is incorrect. is considered to be correct. Therefore, it must have a first state that is

incorrect in the place is correct. The index would be provided by the verifying node, as well

as a "proof-of-invalidity" that includes the subset Patricia tree nodes required to process

S[i-1],TX[i] -> S[i]. The S[i] generated by nodes will not match the S[i].

Company Profile 2020

0033

Conclusion
The D-Chain protocol is designed to be an enhanced version of cryptocurrency. It provides

advanced features like on-blockchain withdrawal limits, on-blockchain escrow, and

financial contracts. Although the D-Chain protocol does not support specific

applications, the Turing-complete programming language allows for creating

arbitrarily designed contracts for any transaction or application. The most

exciting thing about D-Chain is its ability to move beyond currency. Protocols based on

decentralized file storage, decentralized computation, and decentralized prediction

markets, among many other concepts, have the potential for significant efficiency

improvements in the computational industry. They also provide an enormous boost to the

peer-to-peer protocol by adding an economic layer. There are also many applications that

do not involve money. The D-Chain protocol's implementation of an arbitrary state function

provides a unique platform. Instead of being a closed-ended protocol that can only be used

for one purpose, such as data storage, gambling, or finance, D-Chain is designed to be

open-ended and will serve as a foundation layer for many other financial and non-financial

protocols over the coming years.

Legal Disclaimer: This paper is for informational purposes only. This is not a recommen-

dation to trade a particular digital asset or to employ a particular investment strategy. D-

Chain does not represent the suitability of the information provided or any particular asset.

By wrapping or holding DCX, you agree that you have read, understand, and accept all

D-Chain terms and conditions (DCX).

A more sophisticated attack involves malicious validators publishing incomplete blocks.

This means the the information needed to determine whether blocks are valid is

unavailable This problem can be solved using a challenge-response protocol. —

verification.nodes issue "challenges," which are target transaction indices. After receiving

a node, a light node treats it as untrusted until another, regardless of whether the validator

is another verifier, provides a subset of Patricia nodes as proof of validity.

	d-chain
	Table of Contents
	Proof of stake: This is a process thatvalidates crypto transactions by staking
	D-Chain – Consensus Algorithm:
	D-Chain Accounts
	Messages and Transactions
	Messages
	D-Chain State transition function:
	Code Execution
	Blockchain and Mining
	Applications
	Token Systems
	Financial derivatives andstable-value currencies
	TokensStandards
	Identity and Reputation Systems
	Decentralized Storage
	Decentralized Autonomous Organizations
	Additional Applications
	Miscellanea And Concerns
	Sompolinsky& Zohar
	fees
	Turing-Completeness and Computation
	currency
	scalability
	conclusion

	Button 25:
	Button 24:
	Button 23:
	Button 22:
	Button 20:
	Button 19:
	Button 18:
	Button 17:
	Button 16:
	Button 15:
	Button 14:
	Button 13:
	Button 12:
	Button 11:
	Button 10:
	Button 9:
	Button 8:
	Button 6:
	Button 5:
	Button 4:
	Button 7:

